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a b s t r a c t

In image-guided diagnosis and treatment of small peripheral lung lesions the alignment of the pre-
procedural lung CT images and the intra-procedural images is an important step to accurately guide and
monitor the interventional procedure. Registering the serial images often relies on correct segmentation
of the images and, on the other hand, the segmentation results can be further improved by temporal
alignment of the serial images. This paper presents a joint serial image registration and segmentation
algorithm. In this algorithm, serial images are segmented based on the current deformations, and the
mage segmentation
erial image analysis
mage-guided therapy
ung cancer

deformations among the serial images are iteratively refined based on the updated segmentation results.
No temporal smoothness about the deformation fields is enforced so that the algorithm can tolerate larger
or discontinuous temporal changes that often appear during image-guided therapy. Physical procedure
models could also be incorporated to our framework to better handle the temporal changes of the serial
images during intervention. In experiments, we apply the proposed algorithm to align serial lung CT
images. Results using both simulated and clinical images show that the new algorithm is more robust

that o
compared to the method

. Introduction

Lung cancer is the most common cause of cancer death in the
orld, and peripheral lung cancer constitutes more than half of all

ung cancer cases. Decades of research in early detection and treat-
ent methods have little progress to impact the long term survival

f lung cancer patients [1]. It is generally believed that the key to
mprove long term survival of cancers are early detection and inter-
ention with novel therapies. The traditional approach of Computed
omography (CT) screening alone to lung cancer now appears to
esult in high false positive rates. On initial screening of high risk
opulations, most studies report false positive rates between 10%
nd 20% [2]. The Mayo Clinic experience showed that when high
isk individuals are screened for lung cancer with CT, the likelihood
hat they undergo a thoracic resection for lung cancer is increased
y tenfolds [3]. These observations suggest that a better diagnostic
nd therapeutic strategy is needed to identify the early staged lung

ancer and treat them accordingly in order to make CT screening
ost-effective [4] and to eliminate unnecessary surgeries. Molec-
lar imaging guided diagnosis has the advantage to fill this gap
y high sensitivity detection to avoid biannual screening, and the
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nly uses deformable registration.
© 2009 Elsevier Ltd. All rights reserved.

image-guided platform offers the possibility to treat immediately
after confirmed diagnosis.

To tackle the common difficulties in identifying small lung
lesions (<1.5 cm) at an early stage, an image-guided therapy
approach is most promising. This approach relies on pre-procedural
CT images and real-time electromagnetic (EM) tracking to guide
a fiber-optic microendoscope to the small lesion of interest. With
the injection of fluorescent molecular imaging agent prior to the
procedure, a high sensitivity molecular imaging diagnosis can
be performed intraoperatively. It also offers the possibility to
treat the small lung lesion simultaneously and eliminates unnec-
essary surgeries and the procedure related mortality. This type
of workflow integration has a tremendous financial implication
to lower healthcare cost as well as detect and treat periph-
eral lung cancer earlier. Segmentation of suspected lesion and
vascular structures in pre-procedural high resolution lung CT
images can be used to accurately guide the physicians during
intraoperative procedures when it is used in conjunction with EM
tracked real-time guidance system. Compared to the non-real-time
guided interventional lung procedure, fewer punctures and lower
radiation dose is expected without the iterative CT imaging to con-

firm the needle location.

Image-guided system plays an important role in this procedure
in order to accurately and efficiently guide the interventional device
to the target of interest. To reduce the intra-procedural procedure
time, a pre-procedural lung CT image is often captured days before

http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:zxue@tmhs.org
mailto:kwong@tmhs.org
mailto:stwong@tmhs.org
dx.doi.org/10.1016/j.compmedimag.2009.05.007
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Fig. 1. The software workflow of the interventional system. Image segmentation
and surgical planning can be performed for the pre-procedural scan, and during
6 Z. Xue et al. / Computerized Medica

he procedure, thus the lung image and suspected lesion and vas-
ular structures can be segmented for surgical planning. During the
nterventional procedure, the image and its segmentation infor-

ation can be quickly warped onto the CT scan right before the
ntervention to highlight the target and surgical path. Then, with the
elp of the electromagnetic tracking and the visualization system,
hysicians can efficiently and accurately perform the microendo-
copic optical imaging or radio frequency ablation, should the lesion
s confirmed by the molecular imaging results. Thus, the alignment
f the pre-procedural lung CT images as well as the intra-procedural
erial images is an important step to accurately guide and moni-
or the interventional procedure in the diagnosis and treatment of
hese small lung lesions.

Traditional pairwise [5–7] and groupwise [8,9] image registra-
ion algorithms have been used in these applications. However, the
airwise algorithms warp each image separately, and they often
ause unstable measures of the serial images because no temporal
nformation of the serial images has been used in the registration
rocedure. Groupwise image registration methods simultaneously
rocess multiple images, however they often consider the images
s a group, not a time series. Thus, the temporal information has
ot been used efficiently. For serial image registration, the rela-
ionship between temporally neighboring images is much more
mportant than that of the images with larger time intervals, since
oth anatomical structure and tissue properties of neighboring

mages tend to be more similar for neighboring images than oth-
rs; moreover these temporal changes can be characterized using
pecific physical processes models.

Recently, several 4-D image processing algorithms as well as
oint segmentation and registration algorithms have been proposed
n the literature [10–18]. Serial image processing aims at calculating
he image series in the 4-D space wherein temporal deformations
mong images are estimated simultaneously [10–12], while seg-
entation and registration can be combined together since image

egistration significantly benefits from segmentation and vice versa
13–18]. Accurate registration of serial images often relies on correct
xtraction and matching of robust and distinctive image features.
hus, it is an important step to segment the image into different
issue regions, which act as additional features in the image reg-
stration to further improve the temporal alignment of the serial
mages. Moreover, the deformations across serial images also pro-
ide more robust image segmentation.

This paper presents a joint serial image registration and segmen-
ation, wherein serial images are segmented based on the current
emporal deformations so that the temporally corresponding tis-
ues tend to be segmented into the same tissue type, and at the
ame time, temporal deformations among the serial images are iter-
tively refined based on the updated segmentation results. Notice
hat the simultaneous registration and segmentation framework
ad been studied in [19,12,20] for MR images. The previous work,
LASSIC [20], relies on a temporal smoothness constraint, and it is
articularly suitable for longitudinal analysis of MR brain images of
ormal healthy subjects, where the changes from one time-point to
nother is small. Nevertheless, in that algorithm the registration is
urely dependent on the segmented images. In this new algorithm,
o temporal smoothness about the deformation fields is enforced
o that our algorithm can tolerate larger or discontinuous temporal
hanges that often appear during image-guided therapy. Moreover,
hysical procedure models could also be incorporated to our algo-
ithm to better handle the temporal changes of the serial images
uring intervention.
We first demonstrate that, based on the Bayes’ rules, the reg-
stration of the current time-point image is not only related to the
aseline image, but also to its temporally neighboring images. Based
n this principle, a new serial image similarity measure is defined,
nd the deformation is modeled using the traditional Free Form
the intervention, the information from pre-procedural data is fused with the data
obtained from intra-procedural scan(s). Then, real-time EM tracking of the inter-
ventional devices can be visualized in this framework for accurate targeting of the
region of interest.

Deformation (FFD) [6]. Based on the current estimate of temporal
deformations, a 4-D clustering algorithm is applied for segment-
ing the serial images. No adaptive centroids are used because of
relatively small effect of inhomogeneity in CT. The proposed joint
algorithm then iteratively refines the serial deformations and seg-
ments the images until convergence. The advantage of the proposed
method is that it is particularly suitable for registering serial images
in image-guided therapy applications with possible large and dis-
continuous temporal deformations.

We have applied the proposed algorithm to both simulated and
real serial lung CT images and compared it with the FFD. The dataset
used in the experiments consists of anonymized serial lung CT
images of lung cancer patients (N = 20). The spatial resolutions
of the images from the same patient are different due to different
settings and imaging protocols. For the serial images of the same
patient, all the subsequent images have been globally aligned and
re-sampled onto the space of the first image using the ITK pack-
age [21]. The results show that the proposed algorithm yields more
robust registration results and more stable longitudinal measures.

2. Method

2.1. Software workflow for image-guided intervention

Fig. 1 illustrates the software workflow of the image-guided
interventional system. First, a pre-procedural lung CT image is cap-

tured before the intervention. Then, the lung image, vascular struc-
tures, suspected lesions can be segmented for surgical planning.
In the interventional procedure, the intra-procedural image is first
obtained, and the image registration and data fusion step is then
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ig. 2. The framework of the algorithm. The algorithm iteratively performs registra-
ion and segmentation for more robust and accurate serial image alignment.

erformed in order to transfer all the diagnosis and surgical plan-
ing data onto the current image accurately and efficiently. During
he interventional procedure, with the help of the electromagnetic
EM) tracking system, the coordinates of the EM tracking and the CT
mages are registered or calibrated before visualization. Using this
ystem, physicians can efficiently perform the intervention by refer-
ing to the feedback from the visualization system, which shows
he real-time location of the interventional device in the 3-D CT
mages. This paper will focus on the segmentation and registration
lgorithms used in the image-guided interventional system.

.2. Algorithm framework

The algorithm incorporates an iterative serial image segmenta-
ion and registration strategy in order to improve the longitudinal
tability for 3-D image series. It iteratively performs two steps [18]:

Step 1: Given the current segmentation results, the algorithm
refines the underlying longitudinal deformations among the
serial images using the 4-D elastic image warping algorithm. In
Section 2.3, the new serial registration algorithm is proposed.
Step 2: Given a current estimate of the longitudinal deformations
necessary to align serial 3-D images, the algorithm jointly seg-
ments the image series using the 4-D clustering algorithm. This
algorithm had been proposed in [18] and is briefly introduced in
Section 2.4.

Fig. 2 illustrates the flowchart of this iterative algorithm. After
nputting a series of images, the initial 3-D segmentation of the
erial images is performed using AdpkMean [22]. Then, these
egmented images can be used as the input for the 4-D elastic
eformable registration, and after the longitudinal deformations

mong the serial images have been estimated, the 4-D clustering
lgorithm for serial images will refine the segmentation. These 4-D
egistration and segmentation procedures can be performed iter-
tively, and the algorithm stops when the difference between two
onsequent iterations is smaller than a prescribed threshold.
ing and Graphics 34 (2010) 55–60 57

In the registration algorithm, no temporal smoothness about the
deformation fields is enforced so that our algorithm can tolerate
larger or discontinuous temporal changes that often appear during
image-guided therapy. Moreover, physical procedure models could
also be incorporated to our algorithm to better handle the temporal
changes of the serial images during intervention.

2.3. The serial image registration algorithm

Given a series of images It , t = 0, . . . , T (I0 is usually called the
baseline, and all the subsequent images have been globally aligned
onto the space of the baseline by applying the rigid registration
in Insight Toolkit (ITK)), we often need to estimate the deforma-
tions from the baseline onto each image, i.e., f0→t or simply denoted
as ft . Since no longitudinal information is used in pairwise regis-
tration, the temporal stability of the resultant serial deformations
cannot be preserved. Groupwise registration jointly registers all the
images with the baseline, however no temporal information has
been considered effectively.

In this work, we formulate the serial image registration in the
Bayes’ framework, so that the registration of the current time-point
image is related to not only the previous but also the following
images (if available). No longitudinal smoothness constraints are
applied to the serial deformations so that our algorithm can tolerate
temporal anatomical and tissue property changes. For the current
image It , if the deformation of its previous image It−1, ft−1, and that
of the next image It+1, ft+1, are known, the posterior probabilities
of the current deformation ft can be defined as p(ft |I0, It−1, It, ft−1)
and p(ft+1|I0, It, It+1, ft), respectively. By jointly considering both
the previous and the next images, we calculate the deformation
of the current image, ft , by maximizing the combined posterior
probabilities,

f∗
t = arg max{p(ft |I0, It−1, It, ft−1)p(ft+1|I0, It, It+1, ft)}. (1)

Using the chain rule of probability equations, we can easily cal-
culate Eq. (1) as,

f∗
t = arg max{�(t)p(It+1|I0, It, ft , ft+1)p(It |I0, It−1, ft−1, ft)p(ft−1|ft)

× p(ft+1|ft)p(ft)}, (2)

where �(t) gives other probability terms, which are not related
to ft . p(ft+1|ft) and p(ft+1|ft) are the conditional probability of the
serial deformation fields. Since in this work, no temporal smooth-
ness about the deformation fields is enforced so that our algorithm
can tolerate larger or discontinuous temporal changes that often
appear during image-guided therapy, these two conditional proba-
bilities are assumed to be constants. Therefore, f∗

t can be calculated
by minimizing,

f∗
t = arg min{Es,t(I0, It−1, It, It+1, ft−1, ft , ft+1) + �r(t)Er(ft)}, (3)

where Es,t() is the serial image difference/similarity measure, and
Er() is the regularization term of the deformation field. �r is the
weight of Er . The serial image difference measure can be defined
as,

Es,t =
∑
v ∈ ˝

{
|e[It(ft(v))] − e[I0(v)]|2

+
∑

i=−1,1

|e[It(ft(v))] − e[It+i(ft+i(v))]|2
}

, (4)
where e[] is the operator for calculating a feature vector, and ˝ is
the image domain. In this work, the feature vector for each voxel
consists of the intensity, gradient magnitude, and the fuzzy mem-
bership functions calculated from the segmentation step, i.e., e[v] =
[I(v), |�I(v)|, �v,1, �v,2, . . . , �v,K ]T . When a physical process model
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s available, it can be incorporated into the second term of Eq. (4)
r the conditional probabilities of deformations (such as p(ft+1|ft)
nd p(ft+1|ft)), so that any feature changes from one image onto
nother can be considered. Further, the deformations of neighbor-
ng images might not be independent by embedding a temporal

odel of deformations according to the physical model. However,
hat is out of the scope of this study. Er in Eq. (3) is the regularization
nergy of deformation field ft , and it can be derived from the prior
istribution of the deformation. If no prior distribution is available,
he regularization term can be some continuity and smoothness
onstraints. In this work, since the cubic B-Spline is used to model
he deformation field, the continuity and smoothness is guaranteed,
hus the regularization term Er is omitted.

The serial image registration algorithm then iteratively calcu-
ates/refines the deformation field ft of each time-point image by

inimizing the energy function in Eq. (3) until convergence. Notice
hat in the first iteration, since the registration results for neighbor-
ng images are not available, only the first term of Eq. (4) is used,

hich is essentially a pairwise FFD.

.4. The 4-D clustering algorithm for image segmentation

Given the serial images It , t = 0, 1, . . . , T and the longitudinal
eformations ft , t = 1, . . . , T , the purpose of the 4-D segmentation

s to calculate the segmented images I(seg)
t by considering not only

he spatial but also the temporal neighborhoods. The clustering
lgorithm is performed to classify each voxel of the serial image
nto different tissue types by minimizing the objective function,

(�, c) =
T∑

t=0

∑
v ∈ ˝

{
K∑

k=1

[�q
(t,v),k(I(t,v) − ct,k)2] + ˛

2
�(s)

(t,v)

K∑
k=1

× [�q
(t,v),k�̄(s)

(t,v),k] + ˇ

2
�(t)

(t,v)

K∑
k=1

[�q
(t,v),k�̄(t)

(t,v),k]

}
, (5)

here voxel v in image I0 corresponds to voxel ft(v) in image It ,
eferred to as voxel (t, v), and �, c, q, K follow the FCM formulation
23]:

¯ (s)
(t,v),k = 1

N1

∑
(t,u) ∈ N(s)

(t,v)

∑
m ∈ Mk

�q
(t,u),m

nd �̄(t)
(t,v),k = 1

N2

∑
(�,v) ∈ N(t)

(t,v)

∑
m ∈ Mk

�q
(�,v),m, (6)

here N(s)
(t,v) and N(t)

(t,v) are the spatial and temporal neighborhoods of
oxel (t, v), and Mk = {m = 1, . . . , K; m /= k}. The fuzzy membership
unctions � are subject to,

∑K
k=1�(t,v),k = 1,for alltandv.

The second term of Eq. (5) reflects the spatial constraints of
he fuzzy membership functions, which is analogous to the FAN-
ASM algorithm [24]. The difference is that an additional weight
(s)
(t,v) is used as an image-adaptive weighting coefficient, thus
tronger smoothness constraints are applied in the image regions
hat have more uniform intensities, and vice versa. �(s)

(t,v) is defined

s, �(s)
(t,v) = exp

{
−
∑

r[(Dr ∗ It)2
(t,v)/2�2

s ]
}

, where (Dr ∗ It)(t,v) refers
o first calculating the spatial convolution (Dr ∗ It), and then tak-
ng its value at location (t, v), where Dr is a spatial differential
perator along axis r. Similarly, the third term of Eq. (5) reflects

he temporal consistency constraints, and �(t)

(t,v) is calculated as,
(t)
(t,v) = exp{−(Dt ∗ I(t,v))

2
t /2�2

t }, where Dt is the temporal differen-
ial operator, and (Dt ∗ I(t,v))t refers to first calculating the temporal
onvolution (Dt ∗ I(t,v)) and then taking its value at t. It is worth not-
ing and Graphics 34 (2010) 55–60

ing that the temporal smoothness constraint herein does not mean
that the serial deformations have to be smooth across different
time-points.

Using Lagrange multipliers to enforce the constraint of fuzzy
membership function in the objective function Eq. (5), we get the
following two equations to iteratively update the fuzzy member-
ship functions and calculate the clustering centroids,

�(t,v),k=
[(I(t,v)−ct,k)2 + ˛�(s)

(t,v)�̄
(s)
(t,v),k+ˇ�(t)

(t,v)�̄
(t)
(t,v),k]

−1/(q−1)

K∑
m=1

[(I(t,v)−ct,m)2 + ˛�(s)
(t,v)�̄

(s)
(t,v),m + ˇ�(t)

(t,v)�̄
(t)
(t,v),m]

−1/(q−1)

,

(7)

ct,k =

∑
v ∈ ˝

�q
(t,v),kI(t,v)

∑
v ∈ ˝

�q
(t,v),k

. (8)

In summary, the proposed joint registration and segmentation
algorithm iteratively performs the serial registration and the seg-
mentation algorithms until the difference between two iterations
is smaller than a prescribed value. No temporal smoothness about
the deformation fields is enforced in order to tolerate larger or
discontinuous temporal changes that often appear during image-
guided diagnosis and treatment. Another advantage of this method
is that physical procedure models could also be incorporated to
our framework to better handle the temporal changes of the serial
images during intervention. However, relatively simple clustering
segmentation algorithm is used in the iterative procedure, where
no anatomical information such as airway, blood vessels, and others
are available. A sophisticated segmentation might be used to better
represent the lung information for more robust registration.

3. Experimental results

The dataset used in the experiments consists of anonymized
serial lung CT images of lung cancer patients (N = 20). The spatial
resolutions of the images from the same patient are different due
to different settings and imaging protocols. The typical voxel spac-
ing in our data is 0.81 mm ×0.81 mm ×5 mm, 0.98 mm ×0.98 mm
×5 mm, and 0.7 mm ×0.7 mm ×1.25 mm. For the serial images of
the same patient, the time interval between different scans for our
dataset is between 2 and 3 months, and all the subsequent images
have been globally aligned and re-sampled onto the space of the
first image using the ITK package.

Fig. 3 gives an example of the segmentation results of our
dataset. It can be seen that after global registration of the orig-
inal images in Fig. 3(a), the lung regions can be roughly aligned
in Fig. 3(b). By performing the joint registration and segmentation
for such serial images, the lung region can be precisely aligned as
shown in Fig. 3(c) and (d). The parameters used in the experiments
are as follows: K = 3, ˛ = 200, ˇ = 200, �s = 2, �t = 1, and the spa-
tial and temporal neighboring voxels are used. All algorithms have
been implemented using the standard GNU C language on an Intel
Core 2 Duo CPU 2.2 GHz with 2 GB RAM. Based on the number of
CPU cores, the program can divide the images to be processed into
two, four or eight overlapping subimages, and perform registration
of each subimage in parallel. The communication and updating of

the data within the overlapping regions among the subimages are
achieved by using the shared memory of the Linux system. For dual-
core CPU, the processing time for a series of three images with size
512 × 512 × 55 is about 2.5 min. The algorithm typically stops with
two or three iterations.
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ig. 3. Illustration of the joint registration and segmentation algorithm. (a) Input se
nd (d) the corresponding segmented images.

Fig. 4 illustrates the registration results of serial images with
mall lesion. It can be seen that the lesion appears in the same
lice and the same location in the registered serial images. Using
his technique, we can easily calculate the longitudinal changes of
he lesion for diagnosis and assessment, and also precisely guide
he interventional devices toward the lesion during image-guided
herapy.

We evaluated the performance of the proposed algorithm using
imulated images. The images are simulated by randomly sampling
he statistical model trained from the sample deformation fields.
irst, for each series of the sample images, the demon’s algorithm
as used to register the subsequent images onto the first time-
oint image. Then, one sample image is selected as the template
mage, and all the other first time-point images of other subjects are
eformed onto the template space using the same deformable reg-

stration algorithm. Finally the statistical model about the spatially
arped/normalized temporal deformations are calculated, which

ig. 4. Registration results of serial images with lesion. The arrows point to the lesion. It
pace of image t0.
ages, (b) the globally registered images, (c) the results of the proposed algorithm,

is then used to randomly generate the longitudinal deformation of
the template image. In this paper, the statistical model of deforma-
tion (SMD) presented in [25] was used to train such a model. In
our image datasets, one image was selected as the template and
other 19 images were selected as the training samples. Fig. 5 shows
examples of the simulated serial images from the template image.

After applying the algorithm on the 10 randomly simulated
images, the registration errors with the ground truth were calcu-
lated reflecting the accuracy of the registration. The results show
that the mean registration errors (resolution 0.7 mm ×0.7 mm
×1.5 mm) is 0.9 mm, and for images with resolution 0.81 mm
×0.81 mm ×5 mm, the mean registration error is 4.1 mm. In gen-
eral, the registration errors are found less than the largest voxel

spacing of the simulated images.

In order to illustrate the advantages of joint registration and
segmentation, we also calculated the temporal stability of the seg-
mentation results. For each image series, we calculate the total

can be seen that after registration the lesion is aligned to the same location in the
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[

[
[

[
pattern recognition. Med Phys 1993;20(4):1033–48.
ig. 5. Examples of the simulated serial images. The temporal deformations among

umber of tissue type changes along the serial deformation fields
nd normalize this number by the total number of voxels. It turns
ut that for 20 series of images we tested, the proposed algorithm
as about 25% voxels with tissue type changes across the tempo-
al domain, while the FFD yields about 32% tissue type changes
cross the image series. The results indicate that the joint regis-
ration and segmentation generates relatively stable measures for
erial images.

. Conclusion

Integrated image-guided lung cancer diagnosis and therapy pro-
ides a paradigm shift in the workflow of early stage lung cancer
are. Image-guided molecular imaging has the potential to increase
he diagnostic specificity and sensitivity in detecting small periph-
ral lung cancer in real-time. The confirmed lesion can be treated
mmediately under image guidance. This change in the workflow

ill greatly reduce healthcare cost and provide a window of oppor-
unity to detect and treat small peripheral lung cancer earlier.
n our image-guided diagnostic and therapeutic system of small
eripheral lung lesions the alignment of the pre-procedural lung CT

mages as well as the intra-procedural serial images is an important
tep to accurately guide and monitor the interventional procedure.

e proposed a joint registration and segmentation algorithm for
erial image processing in lung cancer molecular image-guided
herapy. In this algorithm, the serial image registration and seg-

entation procedures are performed iteratively to improve the
obustness and temporal stability for serial image processing. A
ew serial image registration algorithm has been proposed based
n the Bayes’ framework, and the registration of the current time-
oint image is not only related to the baseline image, but also
o its temporally neighboring images. Based on this principle, a
ew serial image similarity measure is defined, and the defor-
ation is modeled using the traditional Free Form Deformation

FFD). Experimental results using both simulated and real lung CT
mages show the accuracy and robustness compared to the Free
orm Deformation. Future works include incorporation of physical
rocedure models into our algorithm to better handle the tem-
oral changes of the serial images during intervention, and the

ntegration to the real-time EM-guided fiber-optic microendoscope
ystem.
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