Electrically Small Folded Ellipsoidal Helix Antenna for Medical Implant Applications

Haiyu Huang(1) (2), Karl Nieman(1), Ye Hu(2)
Deji Akinwande(1)

(1) Department of Electrical and Computer Engineering, the University of Texas at Austin, Austin, TX, 78712
(2) The Methodist Hospital Research Institute, Houston, TX, 77030
E-mail: haiyu@mail.utexas.edu
Outline

• Choices of antenna for medical implant applications
• Modeling of folded ellipsoidal helix antenna
• Simulations of folded spherical helix and folded ellipsoidal helix electrically small antenna (ESA)
• Fabrication of folded ellipsoidal helix antenna utilizing selective laser sintering
• Examples of a 423 MHz copper wire antenna and a 1.55 GHz silver printed antenna
• Summary
Choices of Antenna for Medical Implant Applications

• High bandwidth, high efficiency antenna is in need for various medical implant applications
 – Implanted wireless telemetry
 – Wireless power delivery

• 2-D planar ESA
 – Inexpensive, easy to fabricate
 – Easy to integrate with circuits

• 3-D helical ESA
 – Higher efficiency, higher BW
 – Suitable for “antenna on package”, can save real estate inside package for implanted devices
Spherical Helix and Ellipsoidal Helix Antenna

• Folded spherical helix antennas\(^{[1]}\) is a good choice for “antenna on package”.
 – High bandwidth (low Q)
 – High radiation efficiency
 – Compatible for spherical package

• Ellipsoidal helix antenna is a “stretched version” of spherical helix antenna
 – Still high bandwidth
 – Still high radiation efficiency
 – Compatible for ellipsoidal package (more popular)
 – Ellipsoid eccentricity is an additional design variable that can fine tune the antenna to self-resonant

Modeling of The Folded Ellipsoidal Helix Antenna

- The standard ellipsoid body in Cartesian coordinate system is represented as
 \[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{h^2} = 1 \]

- Modeling a k-turn, M-arm folded ellipsoidal helix
 \[
 \begin{align*}
 x_n &= a \sin \delta_n \sin \phi_{m,n} \\
 y_n &= b \sin \delta_n \cos \phi_{m,n} \\
 z_n &= h \cos \delta_n
 \end{align*}
 \]
 where
 \[
 \delta_n = \cos^{-1} \left(\frac{n}{N} \right) \\
 \phi_{m,n} = 2\pi k \frac{n}{N} + 2\pi \frac{m}{M}
 \]

- \(a=b=h\) is the case of spherical helix, in our design we focus on the case \(a=b \neq h\).
Antenna Design Process

MATLAB Script

NEC Freq Sweep

Meet the design?

No

Geometrical specifications

Adjust the geometrical parameters

Simulation Parameter	Value
Wire diameter (cm) | 0.1
Wire conductivity (S/m) | $5.8 \cdot 10^7$
Number of segments N | $60 \cdot \# \text{ of arms}$
Spherical Helix Simulations

(Fixed # of turns, vary # of arms and a)

# of turns	1	1	1
# of arms	1	2	4
a (cm)	0.80	0.85	0.91
ka	0.338	0.359	0.384
Z_{in} (Ω)	3.82 + j0.11	16.8 – j0.08	83.1 - j0.25
BW (MHz/MHz)	22/2017.5 = 1.1%	40/2017.5 = 2.0%	64/2017.5 = 3.2%
Rad. Eff.	88.04%	88.71%	89.07%

- Number of arms \uparrow \rightarrow Rin \uparrow, BW \uparrow while radius and Rad. Eff. remain \simconstant
- However, there is a limit to wire density due to mutual coupling
- More arms increases input resistance and antenna BW
Spherical Helix Simulations

(Fixed # of arms, vary # of turns and a)

- Number of turns ↗ Rin ↘ (more parallel wires), a ↘ (more wire length per unit vol), BW ↘ (strongly correlated w/ a), while Rad. Eff. remains ~constant
- More turns reduces required radius for resonance

<table>
<thead>
<tr>
<th># of turns</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td># of arms</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>a (cm)</td>
<td>1.47</td>
<td>0.91</td>
<td>0.65</td>
</tr>
<tr>
<td>ka</td>
<td>0.62</td>
<td>0.384</td>
<td>0.275</td>
</tr>
<tr>
<td>Z_in (Ω)</td>
<td>210 - j0.67</td>
<td>83.1 - j0.25</td>
<td>46.9 - j0.94</td>
</tr>
<tr>
<td>BW[1] (MHz/MHz)</td>
<td>212/2017.5 = 10.5%</td>
<td>64/2017.5 = 3.2%</td>
<td>27/2017.5 = 1.3%</td>
</tr>
<tr>
<td>Rad. Eff.</td>
<td>89.19%</td>
<td>89.07%</td>
<td>90.42%</td>
</tr>
</tbody>
</table>
Ellipsoidal Helix Simulations

(Fixed # of arms, fix # of turns, vary h and a)

<table>
<thead>
<tr>
<th># of turns</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td># of arms</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>a (cm)</td>
<td>0.90</td>
<td>0.91</td>
<td>0.89</td>
<td>0.87</td>
</tr>
<tr>
<td>h (cm)</td>
<td>0.45</td>
<td>0.91</td>
<td>1.34</td>
<td>1.73</td>
</tr>
<tr>
<td>Aspect Ratio(h:a)</td>
<td>0.5:1</td>
<td>1:1 (Spherical Helix)</td>
<td>1.5:1</td>
<td>2:1</td>
</tr>
<tr>
<td>k *max {a, h}</td>
<td>0.380</td>
<td>0.384</td>
<td>0.566</td>
<td>0.731</td>
</tr>
<tr>
<td>Z_{in} (Ω)</td>
<td>18.5 + j0.35</td>
<td>83.1 - j0.25</td>
<td>188 + j0.21</td>
<td>338 + j0.58</td>
</tr>
<tr>
<td>BW (MHz/MHz)</td>
<td>20/2017.5 = 1.0%</td>
<td>64/2017.5 = 3.2%</td>
<td>135/2017.5 = 6.7%</td>
<td>217/2017.5 = 10.8%</td>
</tr>
<tr>
<td>Rad. Eff.</td>
<td>100.00%</td>
<td>89.07%</td>
<td>87.59%</td>
<td>87.70%</td>
</tr>
</tbody>
</table>

• Height ↗ Rin ↗, BW ↗ while resonant radius and Rad. Eff. Remain constant
• Height can be adjusted to tune Rin (side benefit: BW increases)
3-D Antenna Fabrication Utilizing Selective Laser Sintering

• The complicated structure of ellipsoidal helix can be taped out using selective laser sintering (SLS)
A 1-Turn 2-Arm 423 Mhz Wire Antenna

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># of turns</td>
<td>1</td>
</tr>
<tr>
<td># of arms</td>
<td>2</td>
</tr>
<tr>
<td>a (cm)</td>
<td>4.0</td>
</tr>
<tr>
<td>h (cm)</td>
<td>7.0</td>
</tr>
<tr>
<td>Aspect Ratio (h:r)</td>
<td>1.75:1</td>
</tr>
<tr>
<td>kh</td>
<td>0.62</td>
</tr>
<tr>
<td>Z_{in} (Ω)</td>
<td>51.5 – j1.6</td>
</tr>
<tr>
<td>BW (MHz/MHz)</td>
<td>26/423 = 6.15%</td>
</tr>
<tr>
<td>Rad. Eff.</td>
<td>87.78%</td>
</tr>
</tbody>
</table>
A 1-Turn 2-Arm 423 Mhz Wire Antenna

Simulated and measured $S11$ of the 423MHz wire antenna
of turns 1
of arms 2
a (cm) 0.80
h (cm) 1.50
Aspect Ratio (h:a) 1.875:1
kh 0.636
Z_{in} (Ω) @ 2.025 GHz 52.8 – j0.44
BW (MHz/MHz) 112/2025 =5.53%
Rad. Eff. 88.53%
S11(db) @ 2.025 GHz -31.175
Measured S11(db) @ 1.55 GHz -21.985
Summary

• Spherical and ellipsoidal helix antenna have potential to be used for medical implant applications as “antenna on package”
• Performance of both spherical and ellipsoidal helix antennas are simulated, the ellipsoidal helix one has better self-resonance
• A 423 MHz copper wire ellipsoidal helix antenna and a 1.55 GHz silver printed antenna are successfully fabricated by selective laser sintering rapid prototyping method
Thank You !